

EtherNet/IP Stack

(ESDK & EADK)

Porting Guide
(For use with EtherNet/IP Stack version 5.2.0 and higher)

Pyramid Solutions, Inc.

30200 Telegraph Rd, Suite 440

Bingham Farms, Michigan 48025

Phone: 248-549-1200

Web: www.pyramidsolutions.com

EtherNet/IP Stack Porting Guide

Copyright © (2001-2021), Pyramid Solutions, Inc. Page 1

Document Revision

Revision Remarks Date Author

1.00 Initial Release 10/5/2006 MM

1.01 Updated for v3.7.0 8/24/2007 MM

1.02 Updated for v4.0.0 3/2/2009 MM

1.03 Updated for v4.1.0 8/5/2010 MM

1.04 Updated for v4.2.0 9/5/2010 MM

1.05 Updated for v4.3.0 8/28/2012 MM

1.06 Updated for v4.6.0 1/13/2016 MM

1.07 Updated for v4.8.0 1/29/2018 MM

1.08 Updated for v4.9.0 3/26/2019 PG

1.09 Updated for v5.1.0 6/10/2020 PG

1.10 Updated for v5.2.0 1/20/2021 PG

EtherNet/IP Stack Porting Guide

Copyright © (2001-2021), Pyramid Solutions, Inc. Page 2

TABLE OF CONTENTS

DOCUMENT REVISION ... 1

PORTING THE ETHERNET/IP STACK ... 3

WINDOWS ENVIRONMENTS ... 3

Windows ... 3
OTHER ENVIRONMENTS .. 4

Linux .. 4
Other Platforms .. 4

MEMORY CONSIDERATIONS .. 8
BIG ENDIAN & LITTLE ENDIAN SUPPORT ... 9

64-BIT AND 32-BIT SUPPORT ... 10

PORTING APPLICATION OBJECTS ... 11

TIME SYNC OBJECT .. 11
DEVICE LEVEL RING (DLR) OBJECT ... 11

CIP ENERGY OBJECTS .. 11

PERFORMANCE CONSIDERATIONS ... 12

SALES & SUPPORT INFORMATION ... 14

PRODUCT TECHNICAL SUPPORT... 14
SERVICES & PRODUCT SALES CONTACT INFORMATION .. 14

EtherNet/IP Stack Porting Guide

Copyright © (2001-2021), Pyramid Solutions, Inc. Page 3

Porting the EtherNet/IP Stack

This document describes how to port the ESDK or EADK Stack source code to a particular

platform. The ESDK and EADK both rely on the same mechanism for porting, so switching

between the two requires no additional effort.

All platform specific calls in the EtherNet/IP Stack code are separated out into a platform

module comprised of a header files, Platform.h, and a collection of C files, Platform.c plus files

for platform-specific CIP object functions. Complete platform modules for a variety of

supported platforms and operating systems can be found in individual subdirectories under the

\Src\Platform directory.

Windows Environments

Windows environments typically utilize the ESDK or EADK as a C++ DLL, and it can be built

as such exactly as provided.

Windows

Appropriate workspace and project files (EtIpScanner.sln/EtIpAdapter.sln and

EtIpScanner.vcproj/EtIpAdapter.vcproj) are provided in the Src directory to allow building the

ESDK or EADK respectfully for Windows environments using the Microsoft Visual Studio 2015

development environment. The resulting .LIB and .DLL files along with the

EtIPScanner.h/EtIPAdapter.h include file allow the library to be either implicitly (i.e.

dynamically) or explicitly (i.e. statically) linked with the target application.

Loading the Library

The EtherNet/IP DLL can be linked to an application in one of two ways:

Static Linking

The example project provided statically links the ESDK or EADK DLL to the example

application at build time by its inclusion of both the EtIPScanner.h/EtIPAdapter.h and

EtIPScanner.lib/EtIPAdapter.lib files within the project.

Dynamic Linking

The ESDK or EADK DLL may also be dynamically linked with an application at run time via

the usual Windows API function calls. For example:

m_hinstDll = ::LoadLibrary(“EtIPAdapter.dll”);

m_fpAdapterStart = (AdapterStart)::GetProcAddress(m_hinstDll, “EtIPAdapterStart”);

::FreeLibrary(m_hinstDll);

EtherNet/IP Stack Porting Guide

Copyright © (2001-2021), Pyramid Solutions, Inc. Page 4

Other Environments

Non Windows environments typically either utilize the EtherNet/IP Stack as a linkable C library,

or include and build its code directly with the client application code.

In either case, the Windows DLL C++ wrapper included with the EtherNet/IP Stack is not used.

To eliminate it, do not include the following files in your project:

• EtIpScanner.cpp/EtIPAdapter.cpp and EtIPScanner.h/EtIPAdapter.h (for the

ESDK and EADK respectively)

• StdAfx.cpp and StdAfx.h

Note however that in such environments there is a functional difference between the C API

clientStart() (and scannerStart() for ESDK) function and C++ API

EtIpScannerStart/EtIPAdapterStart() function. The EtIPScannerStart() and EtIPAdapterStart()

function calls clientStart() and then creates a thread which continuously calls clientMainTask() at

periodic (e.g. 1 msec) intervals. When utilizing the stack “C” API, those responsibilities must

instead be handled by the client application itself.

Linux

An appropriate make file (Esdk.mk/Eadk.mk) as well as source code for a simple wrapper

application (EsdkDemo.c/EadkDemo.c) are provided in the Src\Platform\Linux directory to allow

building the ESDK or EADK for Linux using the Gnu C compiler. The make file contains

relative paths to the Src directory.

The Esdk/Eadk.mk makefiles will build the stack as a static library. The

EsdkDemo/EadkDemo.mk makefiles will build the sample application linking with the static

library.

The Linux makefiles are 64/32-bit aware and will build the stack library and demo application

with the appropriate 64 or 32-bit settings based on the platform on which the make is running.

Other Platforms

When porting the EtherNet/IP Stack to other platforms, the user will have to create platform files

appropriate for the target hardware and OS utilized.

A set of platform template files are included in the Platform\Templates directory which provide

functions prototypes, stubs and macros along with comments describing the required

functionality and usage. A few other ported platforms are also included in the Platform

directory.

For complete details on the platform requirements, see the comments in the template platform

files. In general terms, the platform specific functionality which must be provided includes:

EtherNet/IP Stack Porting Guide

Copyright © (2001-2021), Pyramid Solutions, Inc. Page 5

• GetTickCount() implementation – A function which provides the EtherNet/IP Stack with a

way of calculating elapsed times (in milliseconds) in order to maintain the proper connection

rates and determine when messages or connections should time out;

• Sockets implementation – Usually simple macros which address naming differences

between various sockets implementations; Socket API is based on Berkeley sockets.

• Low Level Network Data – A few functions which provide the EtherNet/IP Stack with low

level network data such as the Ethernet MAC ID and TCP/IP configuration settings for the

TCP/IP and Ethernet Link Objects.

• Mutex implementation – A mutex is used to synchronize the execution of the EtherNet/IP

Stack main thread and the application level thread that is using the stack’s services.

• Log file generation - The user may enable log file generation functionality to have debug

trace functionality.

• “Big 12” Diagnostics – If the EIP_BIG12 build option is included, more attributes are

available to be populated in the Ethernet Link object and the platform must provide

information about CPU utilization.

• Platform specific handling for built in CIP Objects – The CIP objects implemented by the

stack interface with the platform to read and write attribute values and handle any specific

Set handling. There are platform functions for the TCP/IP, Ethernet Link, QoS and File

objects.

• Non-Volatile configuration handling – Any object attributes that must be maintained in

non-volatile storage must be stored and retrieved by the platform.

• QoS functionality (Optional) – The EtherNet/IP Stack provided the QoS object through the

EIP_QOS #define, but platform hooks need to be implemented for setting DSCP values and

possibly adding IEEE 802.1D/Q frames.

• Address Conflict Detection (ACD) (Optional) – A function is provided through the

EIP_ACD #define to inform the EtherNet/IP Stack if a duplicate IP address is detected. It is

up to the platform to correctly implement the ACD algorithm as specified in the EtherNet/IP

specification. The platform must also populate the TCP/IP object attributes related to ACD.

• File object functionality (Optional) – A interface to the platform’s file system that will be

used by the stack File object to create, delete, read and write files.

EtherNet/IP Stack Porting Guide

Copyright © (2001-2021), Pyramid Solutions, Inc. Page 6

Additional Socket Implementation Notes

The biggest incompatibility with the EtherNet/IP Stack’s socket implementation is the use of the

platformSelect() call (typically mapped to select()). The platformSelect() call is used to

determine when a socket has successfully connected (or failed with the exceptionset field) via

platformConnect() (typically mapped to connect()). It is NOT used to determine if sockets have

data to read or write.

If the platform doesn’t support select() or the connect() call is non-blocking, a separate thread

can be created to mimic the functionality in the EtherNet/IP Stack. Start by defining

SYNCHRONOUS_CONNECTION (removes the platformSelect() and platformConnect()

functionality in the EtherNet/IP Stack). Below is an example thread function implementing the

connect() call without select(). Specific platform modifications should only need to replace or

modify the connect() call, leaving the rest of the function.

void TCPConnectTask(void *pd)

{

 SESSION* pSession;

 SOCKET lSocket;

 INT32 nSessionId;

 UINT32 lClientIPAddr;

 platformSleep(1);

 while (1)

{

platformWaitMutex(ghClientMutex, MUTEX_TIMEOUT);

for(pSession = gSessions; pSession < gpnSessions; pSession++)

 {

 if (pSession->lState == OpenSessionLogged)

 {

 DumpStr0(TRACE_LEVEL_NOTICE,

TRACE_TYPE_SESSION, 0, 0, "TCPConnectTask connect");

 pSession->lState = OpenSessionWaitingForTCPConnection;

 nSessionId = pSession->nSessionId;

 lClientIPAddr = pSession->lClientIPAddr;

 platformReleaseMutex(ghClientMutex);

 lSocket = connect(lClientIPAddr, 0, htons(

ENCAP_SERVER_PORT), CONNECT_TIMEOUT);

 platformWaitMutex(ghClientMutex, MUTEX_TIMEOUT);

EtherNet/IP Stack Porting Guide

Copyright © (2001-2021), Pyramid Solutions, Inc. Page 7

 pSession = sessionGetBySessionId(nSessionId);

 if (pSession == NULL)

 break;

 if (lSocket > 0)

 {

 SetSocketRxBuffers(lSocket, 15);

 setsocketackbuffers(lSocket, 15);

 /* Save the info for the newly connected socket */

 pSession->lSocket = lSocket;

 pSession->lState = OpenSessionTCPConnectionEstablished;

DumpStr1(TRACE_LEVEL_NOTICE,

TRACE_TYPE_SESSION, pSession->lHostIPAddr, lClientIPAddr,

"Connect() succeeded with session Id 0x%x", nRet);

 }

 else

 {

DumpStr1(TRACE_LEVEL_NOTICE,

TRACE_TYPE_SESSION, pSession->lHostIPAddr, lClientIPAddr,

"Connect() failed with error code %d", nRet);

 sessionRemove(pSession, FALSE);

}

 break;

 }

 }

platformReleaseMutex(ghClientMutex);

 platformSleep(1);

}

}

EtherNet/IP Stack Porting Guide

Copyright © (2001-2021), Pyramid Solutions, Inc. Page 8

Ethernet/IP PlugFest Considerations

The Ethernet/IP Stack supports all CIP object attributes required by the Ethernet/IP Plugfest

requirements. However, it is up to the platform to provide support for getting and setting those

attribute values (and possibly saving values in NV storage). This includes ACD functionality.

Not all platforms provide this capability, so while a device may run Ethernet/IP and pass

conformance testing, it may not pass Plugfest requirements.

The Windows and Linux platform files provided allow EtherNet/IP to operate, but they do not

support setting the (TCP/IP and Ethernet Link) object attributes necessary to pass all Plugfest

requirements.

Memory Considerations

When porting the EtherNet/IP Stack to other platforms, both the size of the ultimate binary

executable as well as the size of data allocated by the stack should be considered.

The size of the binary EtherNet/IP Stack executable image depends on the development tools

used to produce it. In most cases, 96K should be sufficient to accommodate the ESDK or EADK

binary executable.

All of the data (RAM) memory required by the EtherNet/IP Stack can be allocated at stack

startup. This ensures that the stack will not run out of memory later. The maximum data

memory (RAM) required by the EtherNet/IP Stack at run time can be dictated by modifying a

variety of system constants. The constants that affect the largest chunks of memory include:

• MAX_SESSIONS - Maximum number of network peers to which the EtherNet/IP Stack

may maintain simultaneous communications sessions. If the EtherNet/IP Stack has to

originate messages to a particular peer and respond to messages from the same peer, 2

sessions will be allocated – one for sending requests and receiving responses and another for

receiving requests and sending responses. Each potential session instance takes 52 bytes of

data. The default MAX_SESSIONS value is 128.

• MAX_CONNECTIONS - Maximum number of simultaneous connections that can be

opened by and to the EtherNet/IP Stack. Each potential connection instance takes 252 bytes

of data. The default MAX_CONNECTIONS value is 128.

• MAX_REQUESTS - Maximum number of simultaneous outstanding unconnected requests

that can be opened. A Request is outstanding from the moment the EtherNet/IP Stack

receives the send request command from the application layer and the moment the

application layer reads the response data. Each potential outstanding request takes 80 bytes

of data. The default MAX_REQUESTS value is 100.

• MAX_ASSEMBLY_SIZE – The largest supported assembly size. With the addition of

support for the LargeForwardOpen, this can get quite large. Default is 1502 bytes.

• ASSEMBLY_SIZE - The size of the input and the output assembly data areas to store the

I/O data. The Default ASSEMBLY_SIZE value is

(MAX_ASSEMBLY_SIZE*MAX_ASSEMBLIES).

EtherNet/IP Stack Porting Guide

Copyright © (2001-2021), Pyramid Solutions, Inc. Page 9

• MAX_ASSEMBLIES – The maximum number of assemblies that the application can

support. This corresponds to the number of ASSEMBLY structures allocated, which defaults

to taking 532 bytes (mostly due to MAX_MEMBERS). The default MAX_ASSEMBLIES is

128.

• MAX_MEMBERS – The maximum number of members supported within a single

assembly. This is what gives the ASSEMBLY structure most of it size through the

EtIPAssemblyMemberConfig structure which is 8 bytes per member. If members are not

supported by the application, MAX_MEMBERS can be set to 1. The default

MAX_MEMBERS is 64.

• MAX_HOST_ADDRESSES – The maximum number of IP addresses that can be supported

on the device. A TCPIP_INTERFACE_INSTANCE_ATTRIBUTES structure is allocated

for each IP addresses supported at a size of approximately 220 bytes (depending on TCP/IP

object functionality supported). The default MAX_HOST_ADDRESSES value is 16.

• MEMORY_POOL_SIZE - Dynamic data area used to store the actual request data and the

variable length strings including connection paths, names, and tags. The Default

MEMORY_POOL_SIZE value is 64K. Note that this only takes affect if

EIP_STACK_MEMORY is #defined. If it is not defined, the platform’s malloc() and free()

functions will be used

Using the default values defined above, the total RAM required for a Windows target amounts to

554K (due mostly to default ASSEMBLY_SIZE). Note that the RAM requirements can be

reduced dramatically by reducing one or more of the maximum values described above.

For example, for a low-to-medium level system with 32K of RAM available, the recommended

maximum values are as follows:

• MAX_SESSIONS - 32,

• MAX_CONNECTIONS – 16,

• MAX_REQUESTS – 32,

• ASSEMBLY_SIZE – 4K,

• MEMORY_POOL_SIZE – 16K.

• MAX_HOST_ADDRESSES – 1

Big Endian & Little Endian Support

The ESDK and EADK support both “Big Endian” and “Little Endian” memory models. To

enable big endian support, the EIP_BIG_ENDIAN macro should be #defined in platform.h or as

a preprocessor definition. For little endian platforms, don’t include the macro.

Do not define the EIP_BIG_ENDIAN macro for Windows and Windows CE targets since these

operating systems utilize the little endian data format.

EtherNet/IP Stack Porting Guide

Copyright © (2001-2021), Pyramid Solutions, Inc. Page 10

64-bit and 32-bit Support

Some portions of the ESDK and EADK handle memory and pointers such that the stack must be

aware of whether the platform architecture is 64-bit or 32-bit. If the stack will be run on a 64-bit

platform, the EIP_64BIT compiler directive must be defined when building the stack.

EtherNet/IP Stack Porting Guide

Copyright © (2001-2021), Pyramid Solutions, Inc. Page 11

Porting Application Objects

The EtherNet/IP Stack provides some CIP objects that aren’t necessary for the basic operation of

EtherNet/IP functionality. They are considered optional objects by most Device Profiles. They

can be included in a device by registering them through clientRegObjectsForClientProc(). Since

they are usually optional for a device, it didn’t make sense to require porting functionality that

was specific to those objects. The API used in the objects reflects the external API used by any

device specific (application) object.

Time Sync Object

The Time Sync Object is the CIP object that represents IEEE-1588 v2 time synchronization

functionality. The platform file for the Time Sync object provides hooks to get/set attributes

that affect the behavior of an IEEE-1588 v2 stack. An IEEE-1588 v2 stack is NOT included

with the EtherNet/IP Stack.

Device Level Ring (DLR) Object

The DLR Object provides the configuration and status information interface for the DLR

protocol. The DLR protocol is a layer 2 protocol that enables the use of an Ethernet ring

topology. The platform file for the DLR Object provides hooks to get/set attributes that affect

the behavior of the DLR protocol. Both supervisor and non-supervisor functionality is supported

through the DLR_RING_SUPERVISOR #define. A supervisor supports much more

functionality.

CIP Energy Objects

The CIP Energy Objects provide energy and power reporting for a device. The porting process

involves registering for the attributes a device supports for the energy object(s) it supports. The

registered functions within the application are then called when requests for the object attributes

are received. In addition to the registered attributes, instances of the object need to be created as

well. An example of a porting of the CIP Energy objects can be found in EIP0021.

EtherNet/IP Stack Porting Guide

Copyright © (2001-2021), Pyramid Solutions, Inc. Page 12

Performance Considerations

Overall performance of the EtherNet/IP Stack depends on the following factors:

▪ UDP traffic load - number of Class1 packets per second handled by the EtherNet/IP Stack;

▪ TCP traffic load - number of UCMM and Class3 packets per second handled by the

EtherNet/IP Stack;

▪ PC processor speed - The performance of the EtherNet/IP Stack increases proportionally to

the CPU speed. For example, when upgrading to a processor with a 2x performance

increase, you can expect stack performance to increase about twofold;

▪ Network speed - 100Mb/sec will provide better performance compared to the 10Mb/sec.

▪ Network utilization - To reduce network utilization you should allocate a separate network

for the EtherNet/IP devices;

▪ Network type - Full-duplex will provide better performance and compatibility than half-

duplex.

For optimal performance and consistency please make sure that all devices are using

Ethernet speed of 100Mb/sec and full-duplex protocol. Use the Windows Control Panel

Network applet on the PC running the EtherNet/IP Stack to switch to 100 Mb/sec and full-

duplex.

Listed below, we have included some performance tests run against the ESDK. The test results

provide a rough estimate of ESDK performance for similar PC configurations listed below:

The test configuration consisted of:

▪ ESDK Scanner;

▪ 65 1793- and 1794- series Flex I/O modules connected to 14 1794-AENT adapters;

▪ ControlLogix 5555;

▪ Signal Generator.

All devices were connected in a closed circuit full-duplex 100M network.

Two PC hardware configurations were used to run the ESDK:

▪ Pentium II 333 with 128MB RAM; and

▪ Pentium III 866 with 256 MB RAM.

Both PCs had the Windows 2000 operating system.

The tests started with the ESDK Scanner opening 65 Class1 connections to the Flex I/O modules.

The Requested Packet Rate (RPI) was set to 10 msec for the Pentium III 866MHz PC and 20

msec for the Pentium II 333MHz PC. A signal generator was used to change the input of the

Flex I/O module. The ESDK Scanner was responsible for detecting the input change and

updating the output of another Flex I/O module accordingly. The ControlLogix controller

recorded the delay between the input change by the signal generator and the output change by the

ESDK Scanner.

Each test was run for 10 hours and consisted of 360,000 iterations. A cyclic connection type was

used to provide an “ideal” maximum delay of 2 times the RPI. The “ideal” maximum delay is

EtherNet/IP Stack Porting Guide

Copyright © (2001-2021), Pyramid Solutions, Inc. Page 13

the Consuming Rate + Producing Rate for the Cyclic connections and the Producing Rate for the

Change Of State and Application Triggered connections. The difference between the recorded

maximum delay and the “ideal” maximum delay is the maximum processing time (or maximum

overhead) imposed by the network, the operating system and the ESDK.

The Pentium II 333MHz PC based test with a traffic load of 6500 UDP packets/sec, recorded a

maximum processing time of 30 msec. The Pentium III 866MHz PC based test with a traffic

load of 13000 UDP packets/sec recorded a maximum processing time of 20 msec.

EtherNet/IP Stack Porting Guide

Copyright © (2001-2021), Pyramid Solutions, Inc. Page 14

Sales & Support Information

Product Technical Support

If you require product specific technical support, please contact Pyramid Solutions’ Product

Technical Support team as follows:

1) Send an Email to productsupport@pyramidsolutions.com

This method is the fastest because it immediately reaches all support engineers and allows

you to specify the specific product and question / issue. We suggest that you specify the

product in the email subject e.g. “ESDK Support Request” and provide a detailed description

of your question / issue in the body of the email. A product engineer will either respond by

email or will call you to initiate a discussion.

2) Call for support

248-549-1200 (Pyramid Solutions’ Bingham Farms, MI USA office)

When prompted for “Additional Options”, Press 1, then when prompted for “Customer

Support”, Press 2, and when prompted for “BridgeWay and NetStaX Support”, Press 1.

Note: You must have available built-in product support hours remaining or have purchased

additional support services to receive technical support. Support will be provided based on

resource availability between the hours of 9:00 am to 5:00 pm EST (Monday through Friday

except for Holidays). If you require additional support or other services, please contact the sales

number shown below.

Services & Product Sales Contact Information

Pyramid Solutions, Inc.

Headquarters

30200 Telegraph Road, Suite 440

Bingham Farms, Michigan 48025

Phone: (248) 549-1200

1-888-PYRASOL

FAX: (248) 549-1400

Web: www.pyramidsolutions.com

mailto:productsupport@pyramidsolutions.com
http://www.pyramidsolutions.com/

	EtherNet/IP Stack
	(ESDK & EADK)
	Porting Guide
	Document Revision
	Porting the EtherNet/IP Stack
	Windows Environments
	Windows
	Loading the Library

	Other Environments
	Linux
	Other Platforms
	Additional Socket Implementation Notes

	Big Endian & Little Endian Support
	64-bit and 32-bit Support

	Porting Application Objects
	Time Sync Object
	Device Level Ring (DLR) Object
	CIP Energy Objects

	Performance Considerations
	Sales & Support Information
	Product Technical Support
	Services & Product Sales Contact Information

